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Abstract. This paper aims to give a friendly introduction Riemann surfaces.

We begin with some standard facts from complex analysis, and then give

the definition and examples of Riemann surfaces. Finally we introduce the
notion of the Riemann surface of a holomorphic function, which is the historical

motivation for studying them. We will follow Donaldson’s book Riemann

Surfaces [1].
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1. A complex analysis refresher

Throughout, Ω will denote a connected open subset of C commonly called a
domain.

Definition 1.1 (Holomorphic function). Let f : Ω → C be a function. We call f
holomorphic at a point z0 ∈ Ω if

lim
z→z0

f(z)− f(z0)

z − z0

converges in C. If f is holomorphic at z0 for all z0 ∈ Ω, then we call f holomorphic
on Ω and write f ∈ H(Ω).

If we forget that C is a field, then we can identify it with R2 and we get a notion
of differentiability of functions between open sets in linear spaces: if f : Ω → C is
a continuous function, we call it differentiable at z0 ∈ Ω if there exists a real-linear
map T : C→ C satisfying

|f(z0 + h)− f(z0)− T (h)|
|h|

→ 0, as |h| → 0

A holomorphic function is differentiable, but the criterion in 1.1 is stricter than the
one we just gave. It says that the map T , called the differential, is multiplication
by a complex number w. If we use the coordinates (x, y) where z = x + iy for C,
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then with these coordinates, the differential at z0 for a holomorphic function takes
the form

Tz0 = r

[
cos θ − sin θ
sin θ cos θ

]
where r = |w| and θ = arg(w). The picture geometrically is that the differential of
a holomorphic function is given by rotation composed with dilation. An example of
a differentiable map that is not holomorphic is the map z 7→ z. Some examples of
holomorphic functions include polynomials, the exponential, and the trig functions.

You may ask yourself: given a holomorphic function f on Ω, can I extend it to
be holomorphic on a bigger set? Such a question is made precise using the notion of
analytic continuation. (Such a process might be called “holomorphic continuation”,
however the term “analytic” was used first historically which is not a problem, since
a function is holomorphic if and only if it is analytic [2]).

Definition 1.2 (Analytic continuation). Let f be a holomorphic function defined
on a neighborhood U0 of z0 ∈ C. Let γ be a path starting at z0. An analytic
continuation of f along γ is a family of holomorphic functions ft for t ∈ [0, 1] where
ft is defined on a neighborhood Ut of γ(t) such that

• f0 = f on some neighborhood of z0;
• for each s ∈ [0, 1] there is a δs > 0 such that if |t− s| < δs, then the

functions ft and fs are equal on their common domain Us ∩ Ut.

As an example, we will consider the complex logarithm. If z = reiθ, then a
sensible definition of the logarithm is log(z) = log(r) + iθ where the logarithm on
the right-hand side is the log of a real variable. This definition satisfies elog(z) =
log(ez) = z however, z also equals rei(θ+2πk) for all k ∈ Z, so this function is not
well-defined on all of C. If we make what is called a “branch cut” along the negative
real axis, then on C\R≤0 we can define the complex logarithm as above stipulating
that θ takes values in (−π, π) to get an actual function. We did not have to choose
the negative real axis and the interval (π, π); we could have chosen to cut out any
ray starting at the origin and an appropriate interval (a, a+ 2π).

Here’s where analytic continuation comes in. Let f be the complex logarithm
with branch cut R≤0 and θ ∈ (−π, π) defined on B1(0). Let γ(t) = e2πit which
is a loop around the origin. Then we can analytically continue f along γ: ft will
be the “logarithm” defined on B1(γ(t)), but with branch cut R≤0 · e2πit. We can
picture this as a ball moving along the unit circle, and the branch cut moving along
with the center of the ball at the same speed. Doing this forces us to end up with
f1(z) = log(r) + iθ with θ taking values in (π, 3π).

If the fact that the logarithm is not globally defined on C bothers you, do not
worry. We will soon introduce the necessary tools to produce a Riemann surface
on which the logarithm is a globally defined function to C.

2. Definition and examples of Riemann surfaces

Definition 2.1 (Riemann surface). A Riemann surface X is the following data: a
Hausdorff topological space X and an equivalence class of an atlas {(Ui, φi)}i∈I .
Here each Ui is an open set in X and φi is a homeomorphism between Ui and an
open subset U ′i of C. We require that the collection of Ui cover X, and that for
each i, j ∈ I, the transition function φj ◦ φ−1

i from φi(Ui ∩ Uj) to φj(Ui ∩ Uj) is a
holomorphic function.
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Two atlases {(Ui, φi)}i∈I and {(Vj , ψj)}j∈J for X are equivalent if their disjoint
union is again an atlas for X. The functions φi are called coordinate charts, or just
charts for short.

Example 2.2. An open set Ω in C is a Riemann surface with the atlas {Ω, idΩ}.
Some important instances of these are the unit disk D = {|z| < 1} and the upper-
half plane H = {Im(z) > 0}. These are equivalent Riemann surfaces under the
Cayley map T : H → D given by

z 7→ z − i
z + i

Example 2.3. Another example is the Riemann sphere S2. As a set, this is just
C with the extra point {∞}. The topology is generated by open sets in C together
with {∞} ∪ (C \K) where K is a non-empty compact subset of C. We can make
S2 into a Riemann surface with the following atlas:

U0 = {|z| < 2}, U1 = {|z| > 1/2}
φ0 = idU0

, φ1(z) = 1/z

U ′0 = U ′1 = U0

The transition functions φ0 ◦φ−1
1 and φ1 ◦φ−1

0 are both the function z 7→ 1/z from
the annulus {1/2 < |z| < 2} to itself. Hence S2 is a Riemann surface.

Here is an example for the algebraic folks if you know some differential topology.

Example 2.4. Let P (z, w) be a complex polynomial in two variables and let X ⊂
C2 be the set of points (z0, w0) for which P (z0, w0) = 0. If for all (z0, w0) ∈ X one
of

∂P

∂z
(z0, w0) or

∂P

∂w
(z0, w0)

is non-zero, then X is a Riemann surface. This follows from the implicit function
theorem in the holomorphic case and our assumption that 0 is a regular value.

Next up on the docket are maps between Riemann surfaces. Of course, we could
talk about any old maps, but here is the notion of a holomorphic map between
Riemann surfaces.

Definition 2.5. Let X and Y be Riemann surfaces with atlases {(Ui, φi)}i∈I and
{(Vj , ψj)}j∈J respectively. Then a map F : X → Y is called holomorphic if for
each i and j, the composition

ψj ◦ F ◦ φ−1
i : φi(Ui ∩ F−1(Vj))→ V ′j

is holomorphic in the sense of 1.1.

Two Riemann surfaces X and Y are isomorphic if there exists a holomorphic
bijection F : X → Y whose inverse is also holomorphic.

3. The Riemann surface of a holomorphic function

Finally, here are the promised goods. The analytic continuation of a function
defined on a Riemann surface X along a path is defined analogously as in 1.2, just
replacing C with X.
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Theorem 3.1. Let Y be a connected Riemann surface, y0 a point in Y , and ψ0 a
holomorphic function defined on a neighborhood of y0. Then there exists a Riemann
surface X, a locally homeomorphic holomorphic function F : X → Y , a point
x0 ∈ F−1(y0), and a holomorphic function Ψ on X such that

• ψ0 can be analytically continued along a path γ in Y if and only if γ has a
lift γ̃ in X starting at x0

• The analytic continuation of ψ0 along γ has ψ1 equal to Ψ ◦ F−1
γ̃ in a

neighborhood of γ(1).

Proof. Define X ′ to be the set of pairs (γ, ψt) where γ is a path in Y based at y0,
and ψt is an analytic continuation of ψ0 along γ (recall from 1.2 that an analytic
continuation is given by a one-parameter family of holomorphic functions). Define

X to be X ′ modulo the following equivalence relation: (γ, ψt) ∼ (γ̃, ψ̃t) if and only

if γ(1) = γ̃(1) and ψ1 and ψ̃1 agree on a neighborhood of γ(1) in Y . Let F : X → Y
be given by (γ, ψt) 7→ γ(1), and let Ψ : X → C be given by (γ, ψt) 7→ ψ1(γ(1)).

Now we check that X,F , and Ψ do what we want them to do. Our first task
is to topologize X. Let (γ, ψt) ∈ X. Then γ(1) lies in the domain of a chart U ,
and without loss of generality we can take U to be homeomorphic to a disk in C.
Without loss of generality, the domain V of ψ1 can be taken to be homeomorphic to
a disk as well. Then define U ′ ⊂ X to be the set of (γ′, ψ′t) for which γ′(1) ∈ U ∩V
and ψ′1 agrees with ψ1 inside U ∩V . We declare that U ′ is homeomorphic to U ∩V ,
and we let these U ′ generate the topology on X.
X is Hausdorff essentially because Y is, and this topology makes F a local

homeomorphism. As for charts, if (γ, ψt) in X is contained in U ′ as above, use the
chart φi for U pulled back along F . The condition that the transition functions
are holomorphic follow from the fact that F is a local homeomorphism and the fact
that this condition holds for charts for Y . So X is a Riemann surface. By the same
reasoning, F is holomorphic, because it is just the identity map in charts. Ψ is
holomorphic because in charts, it is given by a holomorphic function ψ1.

Finally we check the two bullet points above. Let x0 = (y0, ψ0) where y0 denotes
the constant path [0, 1] → y0. If γ has a lift to X starting at x0, then ψ0 can be
analytically continued along γ because of how we have defined X. On the other
hand, if ψ0 can be analytically continued along a path γ, then its lift γ̃ in X can
be constructed as follows: at time s ∈ [0, 1], γ̃(s) = (γs, ψst) where γs is γ pull
backed by x 7→ sx for x ∈ [0, 1]. As for the second item, let ψ be the analytic
continuation of ψ0 along γ. If we consider the lift γ̃ and the point (γ1, ψt) lying
above γ(1), then ψ1 equals ψ on a neighborhood of γ(1), and so ψ equals Ψ ◦ F−1

γ̃

on that neighborhood. �

Example 3.2. Recall our discussion of the logarithm earlier. We could have con-
tinued f defined above around a circle that wound around the origin n times for
n ∈ Z, with −n denoting going around the origin clockwise. We also could have
started at any point in C∗ and resized the balls accordingly. Thus it does not take
much to convince yourself that the Riemann surface associated to the logarithm can
be visualized as a surface spiraling down the z-axis in R3. You can think of going
up or down a level as adding or subtracting 2πi from the value of the logarithm.

Example 3.3. Another illustrative example is the complex square root function.
In C \ {0}, each number has two square roots, so the square root function is not
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globally defined. However, we can make use of branch cuts to define the square

root on say C \ R≤0. It is given by
√
z = |z|1/2eiθ/2 for θ ∈ (−π, π). We can

analytically continue this function defined on B1(1) around the origin in a circle
again, although this time, going around the origin once gives us a minus sign since
θ now takes values in (π, 3π), and going around twice gives us back our original
function since θ now takes values in (3π, 5π). The Riemann surface associated to
the square root (say defined on a neighborhood of the unit disc) can be visualized
as follows:

Figure 1. The Riemann surface associated to the square root function
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